

The Impact of Ethanol Policy on Social Welfare and GHG Emissions

Christine Lasco and Madhu Khanna University of Illinois Urbana-Champaign

> October 15, 2008 Farm Foundation Conference St. Louis, MO

> > ▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline	Introduction	Analytical Framework	Numerical Simulation	Conclusions

1 Introduction

- 2 Analytical Framework
- 3 Numerical Simulation

Trends in Ethanol Production

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ○ ○ ○ ○

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Concerns about energy security and climate change
 → alternative energy sources

- Oncerns about energy security and climate change
 → alternative energy sources
- Ethanol is perceived to be a clean fuel that could help address energy and environmental concerns

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Outline	Introduction	Analytical Framework	Numerical Simulation	Conclusions
Backgrou	und			

- Concerns about energy security and climate change
 → alternative energy sources
- Ethanol is perceived to be a clean fuel that could help address energy and environmental concerns
- The government has put in place policies that encourage domestic ethanol production
 - \rightarrow Subsidy (\$ 0.51 per gallon, recently reduced to \$ 0.45)
 - \rightarrow Tariff (\$ 0.54 per gallon and 2.5% of import price)
 - \rightarrow Mandates (15 B gallons of corn ethanol, 21 B of cellulosic ethanol)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Numerical Simulation

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Life Cycle Analysis of GHG Emissions

Study	kg CO2-eq/gallon
BRAZIL	
Oliveira et al. (2005)	1.22
Smeets et al. (2008)	1.42 - 1.5
Macedo et al.(2008)	1.65
US	
Farrell et al. (2007)	6.02

Conclusions

Life Cycle Analysis of GHG Emissions

996

- Examine the welfare effect of biofuels policy taking into account greenhouse gas (GHG) emissions
 - Differentiate ethanol from US and Brazil based on GHG emissions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

- Examine the welfare effect of biofuels policy taking into account greenhouse gas (GHG) emissions
 - Differentiate ethanol from US and Brazil based on GHG emissions
- Specify a miles production function where gasoline and ethanol are imperfect substitutes
 - Most papers assume that ethanol and gasoline are perfect substitutes or complements

▲日▼▲□▼▲□▼▲□▼ □ ののの

- Substitutes: E85, FFVs
- Complements: E10

Outline	Introduction	Analytical Framework	Numerical Simulation	Conclusions
Assum	ptions			

- Consumers benefit from the consumption of miles
- Miles are produced using fuels like gasoline and ethanol (from corn and sugarcane)
- Gasoline and ethanol are imperfect substitutes, sugarcane and corn ethanol are perfect substitutes

▲日▼▲□▼▲□▼▲□▼ □ ののの

- The use of fuels causes GHG emissions
- Miles cause congestion, air pollution and traffic accidents

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Conclusions

Welfare Effect of a Subsidy and a Tariff

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Welfare Effect of a Subsidy and a Tariff

 \bullet The subsidy () increases the domestic demand for ethanol

Welfare Effect of a Subsidy and a Tariff

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Conclusions

Welfare Effect of a Subsidy and a Tariff

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Conclusions

Welfare Effect of a Subsidy and a Tariff

• The tariff increases the domestic price of ethanol to $(P_{\sigma,t}^{S})$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Welfare Effect of a Subsidy and a Tariff

- The tariff increases the domestic price of ethanol to $(P_{\alpha t}^{S})$
- Because of the subsidy, the price to consumers ($P_{\sigma,t}D$) is lower

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Conclusions

Welfare Effect of a Subsidy and a Tariff

· Price received by ethanol exporters decrease

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Welfare Effect of a Subsidy and a Tariff

- · Domestic production and demand increase
- Imports decrease

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Conclusions

Welfare Effect of a Subsidy and a Tariff

Producers gain from the price increase

Conclusions

Welfare Effect of a Subsidy and a Tariff

· Consumers gain from the lower price

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Conclusions

Welfare Effect of a Subsidy and a Tariff

· The government incurs costs from providing the subsidy

Conclusions

Welfare Effect of a Subsidy and a Tariff

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Conclusions

Welfare Effect of a Subsidy and a Tariff

· The government gains revenues from the tariff

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ の Q @

Welfare Effect of a Subsidy and a Tariff

• The welfare effect of the subsidy and tariff depends on the relative sizes of the tariff revenues compared to the cost of providing the subsidy

Outline	Introduction	Analytical Framework	Numerical Simulation	Conclusions
Numeric	al Results			

	Unit	Non	Subsidy &	Change
		Intervention	Tariff	
Welfare Change	B\$			-3.2
Quantity				
Miles	B miles	2960	2966	0.19%
Gasoline	B gallons	112.1	112	-0.09%
Ethanol				
Domestic Supply	B gallons	4.5	4.9	9 %
Imports	B gallons	0.73	0.65	-85%
Total Demand	B gallons	5.2	5.5	6%
GHG Emissions	M mT C	366.8	367.1	0.08%
Consumer Price				
Ethanol	\$/ gallon	2.8	2.7	-3%
Gasoline	\$/ gallon	2.6	2.6	-0.34%

() 20(* ヨー (ヨ・ (ヨ・ (日・ (ロ・)

▲日▼▲□▼▲□▼▲□▼ □ ののの

Conclusions

Valuing Environmental Impacts

GHG

- Carbon price: \$ 25 per ton
- GHG emissions increased by 0.3 M tons
- Cost of increase in GHG emission is \$ 7.5 M
- Total welfare loss: deadweightloss + cost of increase in GHG emissions
- Total welfare loss: **3.2** B + 0.008 B = **3.208** B

Valuing Environmental Impacts

GHG

- Carbon price: \$ 25 per ton
- GHG emissions increased by 0.3 M tons
- Cost of increase in GHG emission is \$ 7.5 M
- Total welfare loss: deadweightloss + cost of increase in GHG emissions
- Total welfare loss: **3.2** B + 0.008 B = **3.208** B

Miles

- Cost of miles externalities: \$ 0.08 per mile
- Miles increased by 6 B
- Cost of increase in miles is \$ 480 M
- Total welfare loss: deadweight loss + cost of increase in GHG emissions + miles externalities
- Total welfare loss: **3.2** B + 0.008 B + 0.48 B = **3.7** B

▲日▼▲□▼▲□▼▲□▼ □ ののの

- The subsidy and tariff causes economic losses of \$3.2 B
- These policies do not help mitigate GHG emissions
- The subsidy and tariff also increases miles consumption through its effect on fuel prices

 \rightarrow lower fuel prices, increase in miles \rightarrow increase in congestion, traffic acccidents, air pollution

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- The subsidy and tariff causes economic losses of \$3.2 B
- These policies do not help mitigate GHG emissions
- The subsidy and tariff also increases miles consumption through its effect on fuel prices

 \rightarrow lower fuel prices, increase in miles \rightarrow increase in congestion, traffic acccidents, air pollution

- The combined effect of the subsidy and tariff decreases welfare by \$3.7 B
 - \$3.2 B in policy costs, \$500 M in environmental costs
 - Of environmental costs, 96% are from increased miles, 96% from GHG

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline	Introduction	Analytical Framework	Numerical Simulation	Conclusions
Question	ns?			

Thank you.

